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1. Introduction

This report summarizes the activities and results carried out within Task A2.2, which is the

responsible of the initial technological requirements evaluations. The output of this

deliverable is functional to the requirements analysis process which has been reported in the

other deliverable produced by Action A2, namely D.A2.1 fArarget users functional
requirementso . For more details concerning the methodo
preparatory action, please refer to the introduction of this deliverable.

The document is organized in five different chapters. Chapter 2 presents a comprehensive
overview of the different physical phenomena that influence the conditions of the road
network, in particular during the winter season. Chapter 3 offers an analysis of the reference
state-of-art in the fields of numerical prediction of weather forecasts and road weather
modeling techniques. Chapter 4 gives a perspective of the basic elements of a Road
Weather Information System (RWIS), and in particular of the peculiarities of Maintenance
Decision Support System, providing evidence of best-practices and activities carried out all
around the world; finally, Chapter 5 provides some final insights about the future evolution of
RWIS in the perspective of cooperative intelligent transportation systems (C-ITS).
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2. Technologies for mobile and static data sources

2.1 Overview of parameters and factors influencing road conditions

Road surface temperature (RST) is a variable which can vary significantly in time and space

as a function of a multitude of influencing factors of very different nature: road construction;

local geography; traffic flows and meteorological conditions. Each of these influencing

factorsi s characterized by a fa&uesoo)f, swheiccihf ipcl apya raa ntee
in the targeted road weather problem. From a mathematical point of view, this complex and
multi-disciplinary dependency can be represented as follows:

Y'Y "QYRGTYO o 6
[1]

where Y indicates a vector of features associated to the road construction influencing factor,
"Oa vector of geographical features which take in particular account the position of the road
within the network and the orography of the surrounding environment, “Yo the traffic
volumes and @ 0 a vector of meteorological features.

From an engineering point of view, this is a classical problem of pattern recognition, in which
the goal is to associate to an input multi-dimensional pattern belonging to a certain feature
space either a function (e.g. RST) or a thematic class (e.g. the condition of the road) through
a regression or classification approach, respectively. In the latter case, the problem can be
formulated as follows:

YAGiYoho 0 © W whw hw hw hw

[2]

where W w hw fw hw fw is the set of thematic classes, in particular w indicates dry
road conditions, w wet road conditions, w is associated with the presence of ice on the
road, w is associated with the presence of frost and w is associated with the presence of
snow. All features belonging to the different influencing factors are summarized in Table 1.

Influencing factor Feature

Road construction n Depth of construction (Y')
Thermal conductivity ('Y )
Thermal diffusivity (Y )
Emissivity (Y)

Albedo (YY)

Latitude (' )

Altitude (* )

Topography (' )
Screening (' )

Geography q

Aa-—Aa_-—Aa_a _a_a_8a_9_-2
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Sky-view factor (' )
Landuse (" )
Toboaraphic exposure (' )

Traffic volumes

Solar radiation (7 0)
Terrestrial radiation (7 O)

Air temperature (7 O)

Cloud cover and type (7 0)
Wind speed (7 0)

Humidity and dew point (7 0)
Precipitation (7 O)

Traffic 4 <
Meteorology 7+ <«

Aa—Aa_—Aa_a_a_a8_9 8 -2_-9_-9

Table 1: List of features and factors influencing the conditions of the roads (adapted from [1]).

2.1.1 Road construction

From a purely road construction point of view, a road can be considered as a solid element
characterized by different overlapping layers, which guarantee the transmission of the
superficial loads on the ground with a minimum of deformability and wear. At present, road
construction profiles can be of two different types: (i) rigid concrete profiles, which are
intrinsically much more resistant and therefore long-lasting, and (ii) flexible four-layers
asphalt profiles (Figure 1), which are the most used in practice, since they guarantee much
more reduced building times and costs.

Figure 1: Four-layers asphalt profiles [2].

From a purely road construction point of view, a road can be considered as a solid element
characterized by different overlapping layers, which guarantee the transmission of the
superficial loads on the ground with a minimum of deformability and wear. At present, road
construction profiles can be of two different types: (i) rigid concrete profiles, which are
intrinsically much more resistant and therefore long-lasting, and (ii) flexible four-layers
asphalt pavements (Figure 1), which are the most used in practice, since they guarantee
much more reduced building times and costs. These layers are [3]:

1 the subsoil layer, i.e. the deepest part of the terrain on top of which the foundations
of the road profile lie. This layer has a typical thickness of 50-100 [cm];
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1 the sub-baselayer (i ndi cat ed i n t heAd fwhichistypically budtvae wi t h
a granular / concrete mixture, with a typical thickness of 15-35 [cm]. This layer is
generally more aerated and is often used for drainage purposes.

1 theroad baselayer i ndi cat ed i n t heAdftheghickest laybimasr e wi t h
flexible pavement, which is typically built through a bituminous mixture. Its thickness,
which can typically reach up to 30 [cm], is chosen, among others, as a function of the
expected traffic flows and climatic conditions.

1 the road pavement, which is typically built as a bituminous conglomerate and is
divided in turn in two sub-layers:

o thebasecourse(i ndi cated i n t he)fwihathickeessasobeve wit
8 [cm];

0 the wearing course (indicatedi n t he f i gur e withla thickmessvi t h AL
of 4-6 [cm];

It is worth noting that it is common on low traffic roads to combine base and wearing courses

into a homogeneous layer without any discontinuity in the nature of the bituminous
conglomerates. In the case of rigid concrete profiles, | ayer s A B0 mtypic@lly,a ADO f
unique layer made of up of simple concrete plates. The exact nature of road pavement
construction profiles can vary quite significantly within a road network. Deeper profiles
characterize roads with more intense transit of vehicles, in particular heavy ones, whereas

minor roads typically present a shallower construction.

The road construction design choices are important to characterize its thermal memory, i.e.
its intrinsic ability to maintain the heat accumulated during the daytime solar radiation;
indeed, the higher is depth of the road construction profile, the higher is its thermal memory
[4]. For this reason, the major roads tend to present, given the same boundary conditions,
the warmest sections within a road networks. On the other side, bridges, which present a
very shallow profile, have a very limited thermal memory. This phenomena are particularly
emphasized during the early and late winter season, when the amount of daytime solar
radiation accumulated by the road surface is highest.

The thermal behavior of a specific road stretch can be completely characterized by taking in
consideration a specific set of parameters. The first one is the thermal conductivity (Q, i.e.
the intrinsic ability of a certain material to conduct heat. Materials with high thermal
conductivity will thus have a minor inclination to maintain heat, and thus a higher attitude to
become colder. Thermal conductivity is defined as ():

o iRo0) S d
Ny Ty @la

[3]
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Q where 0 is the heat conduction speed, which indicates the
amount of thermal energy which can flow in the time unit among
the section "Yof the material (measured in [w]), Qis the length
(depth) of the material in the considered geometry, and Y and "Y
are the surface temperatures at its boundaries.

Another important parameter which is important to describe the

thermal peculiarities of a material is the thermal diffusivity (&).

This factor is associated with the intrinsic ability of adapting to

Figure 2: Reference geometry temperature changes which may occur in the surrounding

Const'ﬁ:rrﬁ]il'r;é?]‘éfg'\ﬂgf’” of environment, and is defined as the ratio between its ability to
conduct heat and to accumulate it:

A Q a ji
EeY J

[4]

where " is the density of the material (expressed in QK& ), and & is the specific heat, i.e.
the amount of heat which is necessary to increase the temperature of a body unit of 1 [J0].
High values of thermal diffusivity indicate an evident attitude of the material to quickly release
heat, while on the contrary low values are an indicator of slow thermal variation processes.

An additional parameter which is important to describe the thermal relationships with the
external elements is the heat transfer coefficient, which is a marker of the attitude of a
material to exchange heat, in particular in correspondence of discontinuity layers. This
coefficient is defined as:

[5]

and is strictly related to other two parameters that describe the heat transfer exchanges,
namely the albedo for the absorption phenomena and the emissivity for the emission ones.

The albedo is defined as the percentage of incoming radiation that is reflected by a surface,
ie.

@]
O

[6]

Because of the principle of energy conservation, mis related to the absorption coefficient |
and the transmission coefficient z through the equationm | Z p.
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Asphalt and concrete profiles are typically E,
dark bodies, and have albedo values in the
order of 5-35%; snow-covered roads can E
on the contrary have very high values, in P '
the order of 90% (Figure 4).
On the other side, the emissivity is defined
as the quantity of energy which is radiated
by a material, and is typically assumed to \ £
be a percentage of the energy radiated by ‘
an i deal Abl acko bo Figure 3: Incoming radiation and energy 2
condition to absorb all the incoming components split.
radiation (i,e.'O O mWJO ©O)and is calculated through
w —
Q= o
[7]
where e op aji is the speed light in vacuum, Qe ¢ < ™ @ J s the Planck

constant, Qe p® yp m @ Jj I is the first Boltzmann constant, _ is the wavelength and

“Ythe temperature of the black body.
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Figure 4: Typical values of albedo for different materials within the road infrastructure scenario [5].
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The emissivity - of a real body is then simply expressed as:

[8]

Furthermore, Kirchhoff demonstrated that the emissivity corresponds exactly to the absorbed
energy (- 1), with the possibility to link this value directly to the albedo.

The empirical determination of road construction parameters has always been a major issue
in the road weather domain, mainly because of a paucity of reliable and accurate data. Even
if standard road construction profiles exist, they are subject to change over time, even
because of the continuous maintenance activities. High confidence data can therefore only
be obtained by (periodically) coring the road section under interest. Because of the current
limitations, the current modelling approach is therefore to consider lock-up tables trying to
provide reference i sfteram dypes b road @dnsirecson rajiles. d i
Chapman et al. [6] suggested to associate for each road type a specific profile with reference
layer depths, materials used, and thermal properties, and to use this information within a
spatially-extended RWIS (XRWIS). A possible innovation in this field is the idea to use
Ground Penetrating Radars (GPRs) for spatially characterizing the road profile, and to use
this accurate data in order to significantly improve the route-based forecasts processed by
the road weather models. More details on this technology are described in paragraph 2.3.

2.1.2 Geographical parameters

Road surface temperature (RST) and conditions are
strictly related to the particular geographical context in
which a road infrastructure is located. The main

parameters which play a specific role in this target §
scenario are the following [1] - [6]: &
LG)J H

T latitude _ Observer #f S N

1 altitude - Horizon 0

1 topography -

1 screening

1 sky-view factor

I landuse

Figure 5: Solar altitude and azimuth:

Latitude can be considered an initial constraint on the geometrical representation (source:
values of RST, since it directly influences the solar en.wikipedia.com).
direct i on relative to the | ocal pl ane of t he

maximum amount of incoming solar radiation that reaches the ground [7] - [8]. In particular,
latitude has a direct impact on the values of solar altitude, i.e. the angular elevation of the
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Sun above the horizon. This elevation changes either daily and seasonally: it is zero at
sunrise each day, increases as the Sun rises and reaches a maximum at solar noon and
then decreases again until it reaches zero at sunset.

The maximum daily solar altitude angle, as well the entire daily solar cycle, vary seasonally.
All this can be modeled with fundamental solar engineering equations [9]; the main equation
of interest for the targeted problem is the following:

Qe | B RE OETOET OER
[9]

where | is the solar altitude; 0 is the latitude, 1 is the solar declination (i.e. the angle

bet ween the direction to the Sun afQdsthethar pl ane
angle, which describes how far east or west the Sun is from the local meridian. For this

reason, at lower latitudes the solar altitude is higher and the solar energy is less dispersed,

while at higher latitudes, the typical altitudes are typically much lower with a more evident

distribution of the energy in larger areas (Figure 6).

December 21
8 hr, 34 min

10 hr, 33 min
L ————

12 hr ——
——

13 hr, 27 min

’ 15 hr, 26 min

> 24 hr

-_—

Figure 6: Effective solar radiation at different latitudes(source: geog.ucsb.edu).

Latitude affects as a consequence the duration of winter seasons as well: countries in the

northern hemisphere at higher latitudes have to face with longer and more frigid periods,

while southern countries present minor ice problems [10]. This is the reason for example,

why Scotland has more snow and ice than other parts of the UK, even if their topography is

quite similar [7]. Longitude is a parameter that is in this context plays a minor role, but is
however important in order to determine the ficor
particular the possible influence that a large body of water can have on it, like for example an

ocean [11].
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Once of the most specific case studies related to the influence of latitude on the distribution
of slipperiness of roads was recently done in Sweden [12], and was studied on different
scales (national, regional and county) and as function of a variety of slipperiness types,
jointly considered in a unique winter index (WI). The result has been that while on the
national and regional scales this correlation has showed to be relatively high, with latitude
proven to be more the more influencing factor on RST, latitude and more in general all
geographical parameters did not manage alone to describe the climate variations at county

l evel, which are in this case mor eFiguedntroll edo
250 200
_ 200 * 160
; . / ; ! /‘
2 %0 s 5 2 120 :
c Aa - ) +
S N g . /
T 100 . = = a8 9 N
2 7 %, L I
? 50 o © % 0 )
40
" : : ' ; 0 r . - -
— e - 60_ - - R e 56.5 57.0 57.5 58.0 585 59.0 59.5 60.0 60.5
Latitude N .
Latitude N
Figure 4. Relation between latitude and WI at the national scale. ) ) ) ) -
y = 10.63 x —514.83 R? is 0.96 for the 1998/2003 period. W 1998/ Figure 10. Relation between latitude and W1 at the regional scale. R* is
2003, 4 1998/1999, A 1999/2000, O 2000/2001, + 2001/2002, 0.95 for the 1998/2003 period. y =29.19 x —1595.75. B 1998/2003,
= 2002/2003. 4 1998/1999. A 1999/2000. O 2000/2001. +2001/2001, = 2002/2003.
160
140 T
= 120 x T
= B g .
5 100 & N -, :
1)) A A .
5 80 ST L ~
= A [0) g—"‘!—.f5 A
S 60 + § — T &+ B m
.0_3 4 - o O S
40 54 ¥ & S
20
0 T T T T T T
56.4 566 56.8 57.0 572 574 576
Latitude N
Figure 16. Relation between latitude and W1 at the county scale. R? is
0.01 for the 1998/2003 period. y = —4.34 x +317.73. B 1998/2003,
4 1998/1999, A 1999/2000, O 2000/2001, +2001/2001, = 2002/2003.

Figure 7: Empirical relation between latitude and a winter index calculated in Sweden at a national, regional and
county scale [12].

Altitude has a direct and significant influence on RST, and can well explain the significant
variations which may be observed at different road locations in a mountainous region, as can
for example in an alpine region like the Autonomous Province of Trento. In this case, the

reference index which is directly linked with RST is the environmental lapse rate[ , defined
as:
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’Q"YJ{j'*Q’
BT e
[10]

Scientific studies have demonstrated since years that typical values for r are in the order of
6.5 [°C/km], with peaks up to a maximum of 9.8 [°C/km] [13]. However, the relationship
between RST and altitude is complex and non-linear, as specifically analyzed by evaluating
and comparing static and mobile RWIS data gathered in Nevada, USA (Figure 8) [14].
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Figure 8: Typical RST variation patterns that can be observed through thermal mapping surveys in case of
altitude profile variations [14].

The effects of altitude are more apparent during times of low atmospheric stability, whereas
as stability increases, RST tends to present a higher correlation with respect to the
topography factor. A common modeling approach is therefore to consider different reference
environmental lapse rates as a function of all the possible stability conditions, which are
typically parameterized through the Pasquill-Gifford stability classes [6]. The present
meteorological conditions can be associated to a certain stability class by analyzing both the
surface wind speed and the cloud coverage [1]. In case of a temperature inversion,
alternative methodologies must be considered in order to properly cope with the presence of
negative environmental lapse rates.

Topography is often considered to be the dominant factor causing differences in RST during
extreme nights [15]. Large variations in air temperature and RST can be observed even in
presence of small differences in topography across the mesoscale landscape.
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Several climatology theories have been ! :

] ) cold air slumping
proposed to explain this complex R
phenomenon; for example, lower

temperatures can be directly associated \ ground fog
with the earlier cessation of turbulent heat — '
transfer in sheltered locations [16] or with frost hollow
the production of horizontal isotherms in
small-scale sheltered terrain [13]. These , , , _

] . . Figure 9: Simple representation of katabatic
consolidated theories can well explain the theory (source: weatheronline.co.uk).
impact of micro-topography on temperature
distribution, while on larger scales the most commonly accepted cause on temperature
variations is the katabatic theory. During stable conditions, it is possible to recognize the
formation of dense cold air layers at the ground. If the topography is undulating, this layer is
induced to move down slope as a katabatic flow, following lines of drainage until a
topographic or a thermal barrier is encountered (Figure 9).

As a consequence, thermal belts are produced, which height may vary as a function of the
strength of the katabatic flow and the relative size of surrounding topography [17]. The
exposure of a valley becomes in particular a dominant factor especially in case of moderate
wind speeds, which are on the contrary more influential in case of environments with
exposed sections and located at higher altitudes [18]. The typical result is that sheltered
locations may experience significant reduction of RST as a consequence of reduced wind
speeds and turbulent heat transfer [19]. Lowest air temperatures measured at valley bottoms
are typically recorded when these processes take place, and are in general linear related
with RST, even if the latter one is often higher due to the thermal inertia of the road
construction.

Altitude (ft)

500

© 2007 Thomson Higher Education

Figure 10: Thermal belt and air temperature variations as a consequence of thermal inversion phenomena
(source: weatheronline.co.uk).

20
LIFE+11 ENV/IT/000002 CLEAN-ROADS i D.A2.2 Technological instruments and constraints



TiS

innovation park

RST variations caused by topography and more specifically induced by katabatic flows are
typically modeled by considering local biases in the site forecasts, which are defined
according to the current stability conditions. A typical approach for this is to associate an
index to the estimated Pasquill-Gifford stability class, identified as a function of the surface
wind speed and the cloud coverage [1].

Another geographical parameter which can alter the energy budget at the surface is
screening, i.e. the presence of sheltered environments which may receive only a portion of
the incoming daytime short-wave radiation. These effects are typically systematic and can be
cause of large daytime RST variations [20]. These deficits were shown to decrease over the
afternoon, and to explain specific lag effects which may take place after sunset, in particular
at low levels of cloud cover and during early and late winter, when solar input is increased
(Figure 11) [21]. Screening effects produced by buildings and forests have the consequence
to produce a natural / artificial wind shelter, which lowers RST [22]. Specific validation
activities carried out at coniferous sites in Sweden demonstrated the presence of RST
differences of up to 3 [°C] between locations in sheltered forests and exposed areas [23] -
[24].
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Figure 11: Typical RST variation patterns which can be recorded through thermal mapping operations in case of
evident screening phenomena [21].

Screening can be taken into account into energy-balance models by comparing the solar

zenth angle with the effective #Abuildingd angl e,
degree of a particular site of interest. In the case the zenith angle is higher, the incoming

radiation will be in the form of direct and diffuse radiation, while in the opposite case the solar

beam is blocked and the radiation can reach the ground only in a diffuse way. A common

way to estimate t he 0 b-4eyelimddges ghiclkaaregcbnsidered as wdllo u s e
in the estimation of the sky-view factor. The reference relationship is [25]:
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[11]

where—i s t he fAbui | dandigtwo panangeters as defined in Figure 12 [6].

Direct and Diffuse Radiation

Image
centre

: |---%F

‘—"-'..-
TR

Diffuse Radiation only

Figure 3. (a) Measurement of r on a fish-eye image. This is repeated for 72 5-degree increments around the image, before being
converted into the bzu'[ar;}zg an gfe £ which is a f;;m'rx'on of the relative size and distance to the intrusion. This is then comparea’
to the solar zenith Z to determine the nature of incoming radiation. (b) When Z>( then incoming radiation will be in the form
of direct and diffuse radiation, or (c) just diffuse when the solar beam is blocked.

Figure 12: Geometrical representation of the calculation of the building angle in the screening factor evaluation
process [5].

A crucial parameter in the spatial variation of RST, which is typically considered in
combination with screening, is the sky-view factor ¢ . This variable is a dimensionless,
normalized quantity which indicates the quantity of visible sky evaluated in correspondence
of a specific location, defined as follows:

. Al O
[12]
where | is the medium elevation angle of the topographic horizon [26].
In case -« P, the road stretch is | ocated in an dide

whereas for ¢ p, there are natural and/or human obstructions such as buildings and/or
trees which are in the conditions of limiting the arrival of the solar radiation on the ground.
Actually, the sky-view factor is very important in the calculation of the nocturnal radiation
budget, since such obstructions can significantly limit the loss of long-wave radiation from the
ground and thus determine a significant increase of air and road surface temperatures [27] -
[28]. Sky-view factor has a dominant role in the application domain of the project. A specific
study carried out in Sweden demonstrated that RST variations can be accounted for up to
61% to this parameter [29]. Similar considerations are confirmed also in other several
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research works available in the literature [30] -
[31] - [32], which clearly show how radiation
losses are maximum in case of very high
atmospheric stability.

An empirical method to estimate  is through
view factor mapping (VFM) surveys [1], which
are essentially thermal mapping operations
which are slightly generalized in order to take
into account even this parameter. The sky-view
factor IS_ eStlmat?d baseq _on a _DOSt-prO(_:essmg Figure 13: Simplified representation of
elaboration chain of digital fish-eye images different sky-view factors conditions
acquired from a camera mounted on the roof of

the mobile probe (Figure 12), which automatically recognizes non-sky pixels from sky ones.
This measurement procedure, which was quite expensive in the past but whose costs are
becoming more and more affordable, has demonstrated to be very precise, and can produce
accuracy values in the order of £ 0.02. A possible result of such an operation is presented in
[33], and demonstrates the large variations that can be obtained within an urban scenario
(Figure 15).

From a modeling point of view, the sky-view factor is very simply taken into account by
introducing an additional parameter in the black body emission model of Stefan Boltzmann:

O -:2Y 0jha
[13]

where - is the emissivity, , VB XP T ®jwa A0 is the second Boltzmann constant,
and "Y is the temperature of the radiating body (in our case, the road infrastructure).

The type of land cover can finally explain additional road temperature variations. In general,
urban areas characterized by a high density of buildings, have a very particular micro-
climate, and are generally several degrees warmer than rural areas. For example, empirical
measurements carried out in the area of Gothenburg demonstrated that this lag can be in the
order of 4 [°C] during stable conditions
[31]. This phenomenon is commonly
referred as urban heat islands [34] -
[35], and is explained by the fact that
urban climates are particularly influenced
by the thermal properties of construction
materials and by the anthropogenic heat
produced by buildings and traffic [8].

Figure 14: A graphical representation of the
urban heat island phenomenon.
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Figure 15: Sky-view factor measurements in an urban scenario I empirical results example [32].

It is worth noting that the canyon geometry which is typical for a urban scenario has also a
direct influence on screening and sky-view effects as well, so real variations are typically
explained as a function of the combination of all these aspects. The wind can also increase
the impact of urban heat island phenomena, since turbulent heat island can significantly be
reduced in sheltered areas [27].

Land cover is typically modeled through a particular index, the roughness length (& ), which
is a function of shape, density and height of surface elements. Typical values are of 8 [m] in
city centres of large cities and 0.5 [m] for suburban areas [36]. In practice, the dynamics of &
are difficult to estimate because of the complex interaction between surface elements. The
common modeling approach is thus to significantly simplify the problem and consider static
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reference pick-up t abl es, which contain values that ar e
land-use / road type combinations (e.g. city centre / urban /sub-urban / rural vs motorway /
minor road types [6]).

2.1.3 Traffic flows

The above considerations on land cover and urban heat islands phenomena are a perfect
introduction for analyzing an additional influencing factor, i.e. traffic. From a physical point of
view, traffic is in the condition to influence RST, given the same boundary conditions,
because of three different reasons [10]:

1 traffic is an additional anthropogenic heat source; in particular, heat can be
transferred to the road surface from the engine, and from the dissipation caused by
tires e frictions during deceleration operations;

1 vehicular transit are in the condition to promote additional turbulent heat fluxes
in correspondence of the road surface.

1 during the diurnal periods, vehicles act as an additional screening element
between the road surface and the incoming solar radiation;

Figure 16: Main contribution to energy balance conditions of RST caused by vehicular transits [37] - [38].
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