

Introduction to Decision Models

Alberto Colorni - Politecnico di Milano

The steps of a decision

Alternatives

elementary actions

Criteria
indicators \& value functions

Evaluation system
what can
(must) be obtained

(see in the following the different procedures)

The different levels of a decision process
i. Information $\rightarrow \quad$ Let's go out for dinner.

> You want
> to go
> outside to dinner with your wife,
> so ...
ii. Feedback $\rightarrow \quad$ Let's go out for dinner, do you agree ?
iii. Discussion $\rightarrow \quad$ Let's go out for dinner, where can we go ?
iv. Involvment $\rightarrow \quad$ Would you like to go out ? to do what?

different actors (Decision Makers, DM's)
a (possibly pre-defined) procedure
constraints (is the restaurant open ?)

Decision Theories: a brief introduction

Short history: - 40's \rightarrow Genesis (during the 2° war)

- 50-60's \rightarrow Development [*] (LP probl. \& Combinatorics)
- 60-70's \rightarrow Specialization (non linear, integer, B\&B, ...)
- 70-80's \rightarrow Multicriteria (the importance of trade-off)
- 50-90's \rightarrow Multiple DM (the different points of view)
- 80-00's \rightarrow Decision Aiding (sw supporting the process)
[*] $\max f(x)$, s.t. $x \in X \quad(X$ finite or infinite set)

Links \& references:

- http://www.informs.org (the INFORMS site)
- http://www.euro-online.org (the EURO site)
- http://www.airo.org (the AIRO site)
- http://www.journals.elsevier.com/european-journal-of-operational-research/
(EJOR, a major OR journal)
- Tsoukias A., From decision theory to decision aiding meth. (EJOR, 2007)

An "ideal" decision problem

- Someone who decides
with respect to one clear objective
with a set of well defined constraints
with all the suitable information

- Examples

Ideal example 1

Combinatorial optimization

Your chorus is defining the storyboard of a concert and you must choose between a set of mottetti (a "mottetto" is a choral musical composition). Each mottetto $\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ has a time of execution t_{j} and a level of success $\mathrm{s}_{\mathrm{j}}(\mathrm{j}=1, \ldots, \mathrm{n})$.
The total time of the exhibition is T min.

What can you do ?

If you want, consider this specific instance:

$$
\mathrm{n}=4 ; \quad \mathrm{t}=(10,22,37,9) ; \quad \mathrm{s}=(60,55,100,15) ; \quad \mathrm{T}=45
$$

(i) What are the variables ?
(ii) How many solutions ?
(iii) What is the optimal choice ?

Ideal example 2

Linear programming (LP)

You must define the week production of a (small) firm that has only 2 products, A and B.
One item of A needs 4 units of the resource R1 and 2 unit of the resource R2.
One item of B needs 1 unit of the resource R1 and 3 units of the resource R2.
You have (weekly) 200 units of R1 and 480 units of R2, and you know that the maximum possible sale for B is 110 items.
The net revenue for item A is $500 €$, for item B is $300 €$.

What can you do?

(i) What are the variables?
(ii) How many solutions ?
(iii) What is the optimal choice? (you can solve with Excel)

Ideal example 2: the model

LP properties ...

What is the optimal choice ? (http://gim.altervista.org/ro/)

- Uncertainties (non-deterministic context, data mining)
- Complexity (problem dimension, non linearity, ...)
- Several stakeholders (distributed decision power)
- Different rationalities (criteria and preferences)
- Various time horizons (often)
- Use of simulation models
what ... if ...

A frame for decision problems

Decision processes: the (3) main elements

1. Math. programming
2. Risk analysis
3. Multiple criteria
4. Social choice
$5,6,7,8 \rightarrow$ Game theory, \ldots

A real decision process

- Uncertainties (non deterministic context, ...)
- Complexity (problem dimension, non linearity, ...)
- Several stakeholders (distributed decision power)
- Different criteria (preferences)
- Different time horizons (often)

The structure of preferences

- Use of simulation models \square what ... if ...
- The perception of the problem and the differences between

The perception of the problem

Decision process in a non-deterministic context

1. Math. programming
2. Risk analysis
3. Multi-objective (criteria)
4. Social choice
$5,6,7,8 \rightarrow \ldots$

[*] \rightarrow non-deterministic context

Two (opposite) theories
(a) Normative theory $\longrightarrow \quad \begin{gathered}\text { what the DM } \\ \text { (prescriptive) } \\ \text { should do }\end{gathered}$
(b) Cognitive theory \longrightarrow what the DM (descriptive) really does \longrightarrow experimental tests

When they

are the same ? \longrightarrow if the (single) DM has all the information (in a deterministic way) and has clearly in mind the criterion (one) of evaluation
I
optimization (easy)

Normative theory: principles

$\mathrm{N}-1^{\circ}$ Principle of INVARIANCE

Equivalent (from the logical point of view) versions
of the same problem must produce the same choice

Examples $>$ Change names or positions for the options
> Change measure units
> Add a constant value for all the results

Counterexamples

Normative theory: principles

$\mathrm{N}-2^{\circ}$ Principle of DOMINANCE

If the DM prefers A with respect to B in every scenario
(or context or state of nature) the choice must be A

Examples $>$ I prefer to be missionaire (with respect to engineer) in peace and prefer to be missionaire (...) in war
$>$ I prefer chicken with respect to beef (when there is nothing else) and I prefer chicken ... also when there is fish
so the choice is better then the choice ...

Counterexamples
(see in next lessons) Extraction from an urn filled with 100 balls
(Tversky, Kahneman, 1986)
The possible choices in uncertainty conditions
(with the DM risk attitude)

Extractions ...

n. of balls	situation A	situation B
90 white	0	0
6 red	45	45
1 green	30	45
1 blue	-15	-10
2 yellow	-15	-15

Better A or B ?

better ...

n. of balls	situat. C	situat. D	n. of balls
90 white	0	0	90 white
6 red	45	45	7 red
1 green	30	-10	1 green
3 yellow	-15	-15	2 yellow

Better Cor D?

better ...

Cognitive theory: a first principle

C-1 ${ }^{\circ}$ Principle of NON NEUTRALITY

The aggregation of (decisional) options
is not a neutral operation !

Given the two preferences on A1 and B2, it is not guaranteed that their aggregation (C1) is the preferred one

- Caution: do not combine too easily the options
- Normally, the ambiguity is avoided, "even if this is not rational "
(Ellsberg)

Cognitive theory: three more principles

The dominance among options should be obvious

```
C-3 \({ }^{\circ}\) Principle of ASYMMETRY
Possibility of losing \(K\) is more important than winning \(K\)
```


C-4 ${ }^{\circ} \quad$ Principle of COMPACTNESS

An aggregated option (A) has an importance less than the sum of the importances of the single sub-options ($\mathrm{A}_{1} . \mathrm{A}_{2}$)

$$
\pi(A)<\pi\left(A_{1}\right)+\pi\left(A_{2}\right)
$$

The structure of preferences

(multiple criteria)

Example - A sabbatical year

- Professor AC has to decide where going for a sabbatical year (he has 5 options)
- Data are the following:
Reward (k€)
Univ. prestige
Life quality

- Qual. (or quant.) scales, converted in numerical [0,10] ones (Ph.1)
- Search for the best choice, between the 5 alternatives (Ph.2-3)
- A multi-criteria (discrete set of options) decision problem

Dominance

Reward
Univ. prestige
Life quality

- Comparison bertween Berlin and Tokio

a common scale !
- Berlin dominates Tokio \rightarrow why?
- Definition (1) dominance \rightarrow in a dec. problem with m objectives (criteria) to be maximized, $\quad \max \mathrm{c}_{1}(\mathrm{x}), \ldots, \max \mathrm{c}_{\mathrm{m}}(\mathrm{x})$, a solution x dominates a solution y if $c_{1}(x) \geq c_{1}(y), \ldots, c_{m}(x) \geq c_{m}(y)$, that is the solution x obtains better (or equivalent) results with respect to the solution y for all the objectives.
- Definition (2) efficient solution \rightarrow a solution x non dominated by any other solution is called efficient or Pareto solution.

More about dominance

- In this context it is still valid the concept of dominance? YES
- There are
 2 dominated solutions (why ?) 3 efficient (non dominated) solutions
- If the data are correct $\&$ if the teacher is rational, he must choose only between Rome - Berlin - Geneva (non dominated sol.)
- So AC has reduced the options, but he doesn't already chosen the final solution (Ph. 2 is done, but Ph. 3 no \rightarrow we need ...)
- What option ? It depends on the importance that the teacher acknowledges to the various criteria: economics (Reward), working place (Univ. prestige), environment (Life quality)
- The preference structure of the DM could be very complex; but in the simpler case it is a vector with dimension equal to the number of criteria (3 in this case)

The reference frame

- Three axis
- The $1 / \mathrm{m} / \mathrm{d}$ case \rightarrow

Decision with m objectives (m criteria)

dec. makers
$\begin{aligned} \text { - Formulation } & \rightarrow \underset{\substack{\operatorname{Min} \text { or } \max \\ \text { with } x \in X}}{\text { (a vector of obj. functions) }} \longleftarrow\end{aligned} \rightarrow\left|\begin{array}{l}c_{1}(x) \\ c_{2}(x) \\ : \\ c_{m}(x)\end{array}\right|$

- Problems $\begin{aligned} & \text { continuous case } \rightarrow \text { multi-objective analys } \\ & \text { discrete case } \rightarrow \text { multi-criteria analys }\end{aligned}$

Three phases of the choice (more in details)

- Phase $1 \rightarrow$ Data analysis
- the objectives of the decision maker are measured by functions
- each function shows the value of an indicator
- each indicator has his own unit of measure
- to compare them a common scale is needed
- the scale exhibits the utilities perceived by the decision maker
- Phase $2 \rightarrow$ Efficient solutions
- are there some dominated solutions ?
- elimination of the dominated solutions
- not dominated or Pareto or efficient solutions (synonyms) remain
- Phase $3 \rightarrow$ Final choice
- analysis of the preference structure of the decision maker
- vector of weights (pair comparison)
- weighted sum of the utility of each alternative
- ranking, final choice, sensitivity

Phase 1 - I ndicators (and their units of measure)

- Example of the incinerator :

$\max f_{1}$ (profit)	\rightarrow	in millions $€ /$ year
$\max f_{2}$ (air quality)	\rightarrow	fraction between 2 values in $\mathrm{mg} / \mathrm{m}^{3}$

- What: to analyze the link between a certain indicator and utility perceived
by the decision maker \rightarrow a function $u_{k}\left(i_{k}\right)$, where i_{k} represent the value of the indicator related to the objective-function $f_{k}(x)$
- Why: the utility function u_{k} allows to affirm that the solution \hat{X}
is better than the solution \bar{X} (following that objective-criterion)
if $u_{k}(\hat{X})>u_{k}(\bar{x})$, while there is no preference if $u_{k}(\hat{x})=u_{k}(\bar{x})$
- Examples of utility functions

Phase 2 - Evaluation matrix

- Discrete case: Multi Criteria (MC) Analysis
- a finite number (n, usually small) of alternatives
- a finite number (m) of criteria
- Evaluation matrix

- Example (sabbatical):

Reward
Univ. prestige
Life quality

$$
\begin{array}{ccccc}
\mathrm{R} & \mathrm{~B} & \mathrm{G} & \mathrm{M} & \mathrm{~T} \\
\left(\begin{array}{ccccc}
5 & 7 & 10 & 2 & 7 \\
3 & 9 & 4 & 6 & 5 \\
10 & 4 & 5 & 3 & 3
\end{array}\right) & \text { Values in a common } \\
\text { (conventional) scale }
\end{array}
$$

Phase 3 - The final choice

- One more element $\rightarrow \rightarrow \rightarrow \rightarrow$ the preferences structure (weights)
- Matrix

Reward
Univ. prestige Life quality

(*) dominated

- The vector of the weights measures the importance that the DM gives to the criteria
- Weighted sum | R | B | G | M | T | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 4.3 | 7.9 | 5.9 | 4.5 | 5.4 |
| 5° | 1° | 2° | 4° | 3° | |

These values (the total utilities) are acalculated as a sum of products: rows x weights

- What does it mean ? What is his use?

Phase 3 - Subjectivity (the wife influence or ...)

- A factor of influence for the DM \rightarrow his wife
- Change the structure of preferences
$\longrightarrow \quad$ the wifes gives much more importance to the life quality (and much less importance to the university prestige)
0.4
0.1
0.5
- Wife weighted sum and new ranking

R	B	G	M	T	
7.3	5.7	6.9	2.9	4.8	
1°	3°	2°	5°	4°	

- Conclusion:
though the use of the same data (eval. matrix) different preferences can make different choice \rightarrow it depends on the weights
but note that a dominated alternative cannot win (for any weight set)

Sensitivity and RR (Rank Reversal)

- Goal:
- To find the variations w_{k}^{+}(increasing) e w_{k}^{-}(decreas.) of the weight of the $k^{\text {th }}$ criteria w_{k} within which the choice doesn't change (the alternative in the first position remains)
- Method:
- keep all the weights $w_{i}(i=1, \ldots, m ; i \neq k)$ except w_{k} with the values given by the DM and calculate the overall utilities of the alternatives as functions of w_{k}
- calculate the values of w_{k} given which the alternative ranked first keep having the higher utility
- Result:
- "narrow" range, little changes in the weight w_{k} would cause a different choice of the alternative

- "wide" range, big changes in the weight w_{k} wouldn't cause a different choice of the alternative

Example

A multicriteria decision problem (6 alternatives, 3 criteria $=$ utilities) is showed in this matrix, with its weight vector.

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}		
c_{1}	60	40	20	70	100	80	w_{1}	0.20
c_{2}	40	40	35	35	35	40	w_{2}	0.40
c_{3}	20	30	60	40	50	50	w_{3}	0.40

1. Are there dominated alternatives?
2. What is the ranking and the final choice ?
3. Is the result changing if w_{2} increase ? Is there a Rank Reversal ?

Tools

A formal decision process needs instruments for:
i. abstraction
ii. analysis
iii. synthesis
(and more ...)

Tools for abstraction

- 1736
- Konigsberg

The problem

- Euler
- Graph theory

The model

Graph theory \& decision problems

- General reports
- http://en.wikipedia.org/wiki/Graph_theory
- http://en.wikipedia.org/wiki/Route_inspection_problem
- http://teoriadeigrafi.altervista.org/teoria dei grafi.pdf (a tutorial)
- Applications
- http://www. ...
- http://www. ...
- http://www.ratp.fr/plan-interactif/ (the Paris metro)
- A famous problem - TSP
- http://www-e.uni-magdeburg.de/mertens/TSP/index.html
- http://www.tsp.gatech.edu/index.html
- http://www.graphtheory.com/

Tools for analysis

- Sudoku (Corriere della Sera, 3 Sept. 2010)

		4				9		
	1	6	2		4	3	8	
	8						5	
4			6		2			1
3			9		8			4
	3						6	
	6	7	3		5	1	4	
		2				8		

- Rules ...
- Branching (a lot of small subproblems)

Tools for analysis ...

Step 2

		4				9		
	1	6	2		4	3	8	
	8					4	5	
4			6		2			1
3			9		8			4
	3						6	
	6	7	3		5	1	4	
	4	2				8		

Step 6

		4				9	1	
	1	6	2		4	3	8	7
	8	3				4	5	
4			6		2			1
3			9		8			4
	3						6	
	6	7	3		5	1	4	X
	4	2				8		

Step 4

		4				9	1	
	1	6	2		4	3	8	
	8	3				4	5	
4			6		2			1
3			9		8			4
	3						6	
	6	7	3		5	1	4	
	4	2				8		

What number in position $X ? \rightarrow 2$ or 9
branch (a) $\rightarrow X=2$
but if $X=2$, there is no place for a 2 in the right-high block;
so $X=2 \rightarrow N O$
branch (b) $\rightarrow X=9$
in this case ...

Tools for analysis ...

Step 8

		4				9	1	
	1	6	2		4	3	8	7
	8	3				4	5	
4			6		2			1
3			9		8			4
	3						6	
8	6	7	3	2	5	1	4	9
	4	2				8		

What in the position Y ? $\rightarrow \quad 5$ or 9
branch (b1) $\rightarrow Y=5$
in this case ...
branch (b1)
$\rightarrow Y=9$
in this case ...

The solution (visualization)

Tools for synthesis

Who is the all time world's best boxeur ?

Indicators:

- strength
- speed
- n. of victories
- years of premiership

We need a common framework
to compare the alternatives!

Alberto Colorni - Politecnico di Milano

- alberto.colorni@polimi.it
- http://www.geoc.test.design.polimi.it/pers1.php?l ang=it\&cod menu=per\&cod menu II=alf\&matr= 10000628

Consorzio Poliedra

- www.poliedra.polimi.it

Thank y

