

Introduction to Decision Models

Alberto Colorni – Politecnico di Milano

To decide ...

The steps of a decision

© Alberto Colorni

The different levels of a decision process

You want to go outside to dinner with your wife, so ...

- i. Information \rightarrow Let's go out for dinner.
- ii. Feedback \rightarrow Let's go out for dinner, do you agree ?
- iii. Discussion \rightarrow Let's go out for dinner, where can we go?
- iv. Involvment \rightarrow
- Would you like to go out ? to do what ?

different actors (Decision Makers, DM's)

a (possibly pre-defined) procedure

constraints (is the restaurant open ?)

Decision Theories: a brief introduction

Short history: • 40's \rightarrow Genesis (during the 2° war)

- 50-60's → **Development** [*] (LP probl. & Combinatorics)
- 60-70's \rightarrow Specialization (non linear, integer, B&B, ...)
- 70-80's \rightarrow Multicriteria (the importance of trade-off)
- 50-90's \rightarrow Multiple DM (the different points of view)
- 80-00's \rightarrow Decision Aiding (sw supporting the process)

[*] max f(x), s.t. x \in X (X finite or infinite set)

Links & references:

- <u>http://www.informs.org</u> (the INFORMS site)
- <u>http://www.euro-online.org</u> (the EURO site)
- <u>http://www.airo.org</u> (the AIRO site)
- <u>http://www.journals.elsevier.com/european-journal-of-operational-research/</u>

(EJOR, a major OR journal)

• Tsoukias A., From decision theory to decision aiding meth. (EJOR, 2007)

An "ideal" decision problem

Someone who decides

with respect to one clear **objective** with a set of well defined **constraints** with all the suitable **information**

in presence of a

finite infinite

set of alternatives

Examples

Ideal example 1

Combinatorial optimization

Your chorus is defining the storyboard of a concert and you must choose between a set of mottetti (a "mottetto" is a choral musical composition). Each mottetto $(m_1, m_2, ..., m_n)$ has a time of execution t_j and a level of success s_j (j = 1,...,n). The total time of the exhibition is T min.

What can you do ?

If you want, consider this specific instance:

n = 4; t = (10, 22, 37, 9); s = (60, 55, 100, 15); T = 45

- (i) What are the variables ?
- (ii) How many solutions ?
- (iii) What is the optimal choice ?

Ideal example 2

Linear programming (LP)

You must define the week production of a (small) firm that has only 2 products, A and B.

One item of A needs 4 units of the resource R1 and 2 unit of the resource R2.

One item of B needs 1 unit of the resource R1 and 3 units of the resource R2.

You have (weekly) 200 units of R1 and 480 units of R2, and you know that the maximum possible sale for B is 110 items.

The net revenue for item A is 500 €, for item B is 300 €.

What can you do ?

- (i) What are the variables ?
- (ii) How many solutions ?
- (iii) What is the optimal choice ? (you can solve with Excel)

Ideal example 2: the model

LP properties ...

What is the optimal choice ? (<u>http://gim.altervista.org/ro/</u>)

© Alberto Colorni

A <u>real</u> decision problem

- Uncertainties (non-deterministic context, data mining)
- **Complexity** (problem dimension, non linearity, ...)
- Several stakeholders (distributed decision power)
- **Different rationalities** (criteria and preferences)
- Various time horizons (often)
- Use of simulation models

A frame for decision problems

Decision processes: the (3) main elements

A real decision process

- **<u>Uncertainties</u>** (non deterministic context, ...)
- Complexity (problem dimension, non linearity, ...)
- Several stakeholders (distributed decision power)
- Different criteria (preferences)
- Different time horizons (often)
- Use of simulation models
 what ... if ...

The structure of preferences

of the decision maker(s)

 The perception of the problem and the differences between cognitive approach

The perception of the problem

Decision process in a non-deterministic context

Two (opposite) theories

Normative theory: principles

Equivalent (from the logical point of view) versions of the same problem **must** produce the same choice

Examples

- Change names or positions for the options
- Change measure units
- Add a constant value for all the results

Normative theory: principles

Examples > I prefer to be missionaire (with respect to engineer) in peace and prefer to be missionaire (...) in war

I prefer chicken with respect to beef (when there is nothing else) and I prefer chicken ... also when there is fish

so the choice ... is better then the choice ...

Extractions ...

n. of balls	situation A	situation B		
90 white	0	0		
6 red	45	45		
1 green	30	45		
1 blue	-15	-10		
2 yellow	-15	-15		

n. of balls	situat. C	situat. D	n. of balls
90 white	0	0	90 white
6 red	45	45	7 red
1 green	30	-10	1 green
3 yellow	-15	-15	2 yellow

Better A or B?

better ...

Better C or D?

Cognitive theory: a first principle

Given the two preferences on A1 and B2, it is **not guaranteed** that their aggregation (C1) is the preferred one

- Caution: do not combine too easily the options
- Normally, the ambiguity is avoided, "even if this is not rational " (Ellsberg)

Cognitive theory: three more principles

The dominance among options should be **obvious**

Principle of **ASYMMETRY**

Possibility of losing K is more important than winning K

Principle of COMPACTNESS

An aggregated option (A) has an importance less than the sum of the importances of the single sub-options (A1.A2)

The structure of preferences

(multiple criteria)

Example – A sabbatical year

• Professor AC has to decide where going for a sabbatical year (he has 5 options)

- Qual. (or quant.) scales, converted in numerical [0, 10] ones (Ph.1)
- Search for the best choice, between the 5 alternatives (Ph.2-3)
- A multi-criteria (discrete set of options) decision problem

Dominance

- Comparison bertween Berlin and Tokio
- Berlin dominates Tokio \rightarrow why?
- Definition (1) *dominance* → in a dec. problem with m objectives (criteria) to be maximized, max c₁(x), ..., max c_m(x), a solution x dominates a solution y if c₁(x) ≥ c₁(y), ..., c_m(x) ≥ c_m(y), that is the solution x obtains better (or equivalent) results with respect to the solution y for all the objectives.
- Definition (2) *efficient solution* → a solution x *non dominated* by any other solution is called *efficient* or *Pareto* solution.

More about dominance

- In this context it is still valid the concept of dominance ? YES
- There are 2 dominated solutions (why?)
 3 efficient (non dominated) solutions
- If the data are correct & if the teacher is rational, he must choose only between Rome Berlin Geneva (non dominated sol.)
- So AC has reduced the options, but he doesn't already chosen the final solution (Ph.2 is done, but Ph.3 no → we need ...)
- What option ? It depends on the *importance* that the teacher acknowledges to the various criteria: economics (*Reward*), working place (*Univ. prestige*), environment (*Life quality*)
- The preference structure of the DM could be very complex; but in the simpler case it is a vector with dimension equal to the number of criteria (3 in this case)

continuous case → multi-objective analys

discrete case → multi-criteria analys

Problems

•

Three phases of the choice (more in details)

• Phase 1 \rightarrow Data analysis

- the objectives of the decision maker are measured by functions
- each function shows the value of an indicator
- each indicator has his own unit of measure
- to compare them a common scale is needed
- the scale exhibits the utilities perceived by the decision maker

Phase 2 → Efficient solutions

- are there some dominated solutions ?
- elimination of the dominated solutions
- not dominated or Pareto or efficient solutions (synonyms) remain

Phase 3 → Final choice

- analysis of the preference structure of the decision maker
- vector of weights (pair comparison)
- weighted sum of the utility of each alternative
- ranking, final choice, sensitivity

Phase 1 – Indicators (and their units of measure)

• Example of the incinerator :

 $\begin{array}{ll} \max f_1 (\text{profit}) & \rightarrow & \text{in millions} \notin \text{year} \\ \max f_2 (\text{air quality}) & \rightarrow & \text{fraction between 2 values in mg/m}^3 \end{array}$

- What: to analyze the link between a certain indicator and *utility perceived* by the decision maker → a function u_k (i_k), where i_k represent the value of the indicator related to the objective-function f_k(x)
- Why: the utility function u_k allows to affirm that the solution x̂ is better than the solution x̄ (following that objective-criterion) if u_k(x̂) > u_k(x̄), while there is no preference if u_k(x̂) = u_k(x̄)
- Examples of utility functions

Phase 2 – Evaluation matrix

• Discrete case:

Multi Criteria (MC) Analysis

- a finite number (n, usually small) of alternatives
- a finite number (m) of criteria

R B G M T

7 10 2 7

9 4 6 5

4 5 3 3)

• Evaluation matrix

rows (m) → criteria columns (n) → alternatives

uki = utility with respect to criterion k of the alternative j

• Example (sabbatical):

Reward	(5
Univ. prestige	3
Life quality	10

Values in a common (conventional) scale

© Alberto Colorni

Phase 3 – The final choice

Phase 3 – Subjectivity (the wife influence or ...)

- A factor of influence for the DM \rightarrow his wife
- Change the structure of preferences
 - the wifes gives much more importance to the life quality (and much less importance to the university prestige)
- Wife weighted sum and new ranking

Conclusion:
 subjectivity

though the use of the same data (eval. matrix) different preferences can make different choice \rightarrow it depends on the weights

0.4

0.1

0.5

but note that a dominated alternative cannot win (for any weight set)

Sensitivity and RR (Rank Reversal)

- Goal:
 - To find the variations w_k^+ (increasing) e w_k^- (decreas.) of the weight of the kth criteria w_k within which the choice doesn't change (the alternative in the first position remains)
- Method:
 - keep all the weights w_i (i=1,...,m; i≠k) except w_k with the values given by the DM and calculate the overall utilities of the alternatives as functions of w_k
 - calculate the values of w_k given which the alternative ranked first keep having the higher utility

• Result:

- "narrow" range, little changes in the weight w_k

would cause a different choice of the alternative

W_k

- "wide" range, big changes in the weight w_k

wouldn't cause a different choice of the alternative

Wide range

Example

A multicriteria decision problem (6 alternatives, 3 criteria = utilities) is showed in this matrix, with its weight vector.

	a ₁	a_2	a ₃	a_4	a_5	a_6		
C ₁	60	40	20	70	100	80	W ₁	0.20
C ₂	40	40	35	35	35	40	W ₂	0.40
С ₃	20	30	60	40	50	50	W ₃	0.40

- 1. Are there dominated alternatives ?
- 2. What is the ranking and the final choice ?
- 3. Is the result changing if w_2 increase? Is there a Rank Reversal?

Tools

A formal decision process needs instruments for:

i. abstraction

ii. analysis

iii. synthesis

(and more ...)

Tools for abstraction

- 1736
- Konigsberg

The problem

- Euler
- Graph theory

The model

Graph theory & decision problems

- General reports
 - <u>http://en.wikipedia.org/wiki/Graph_theory</u>
 - <u>http://en.wikipedia.org/wiki/Route_inspection_problem</u>
 - <u>http://teoriadeigrafi.altervista.org/teoria_dei_grafi.pdf</u> (a tutorial)
- Applications
 - <u>http://www</u>....
 - <u>http://www</u>....
 - <u>http://www.ratp.fr/plan-interactif/</u> (the Paris metro)
- A famous problem TSP
 - http://www-e.uni-magdeburg.de/mertens/TSP/index.html
 - <u>http://www.tsp.gatech.edu/index.html</u>
 - <u>http://www.graphtheory.com/</u>

© Alberto Colorni

Tools for analysis

Sudoku (Corriere della Sera, 3 Sept. 2010)

		4			9		
	1	6	2	4	3	8	
	8					5	
4			6	2			1
3			9	8			4
	3					6	
	6	7	3	5	1	4	
		2			8		

- Rules ...
- **Branching** (a lot of small subproblems)

Tools for analysis ...

Step 2

		4			9		
	1	6	2	4	3	8	
	8				4	5	
4			6	2			1
3			9	8			4
	3					6	
	6	7	3	5	1	4	
	4	2			8		

Step 6

		4			9	1	
	1	6	2	4	3	8	7
	8	3			4	5	
4			6	2			1
3			9	8			4
	3					6	
	6	7	3	5	1	4	Χ
	4	2			8		

What number in position $X ? \rightarrow 2$ or 9

branch (a) $\rightarrow X = 2$

but if X = 2, there is no place for a 2 in the right-high block; so $X = 2 \rightarrow NO$

branch (b) $\rightarrow X = 9$ in this case ...

Tools for analysis ...

		4				9	1	
	1	6	2		4	3	8	7
	8	3				4	5	
4			6		2			1
3			9		8			4
	3						6	
8	6	7	3	2	5	1	4	9
	4	2				8		

What in the position Y? 🔶

5 or 9

branch (b1) \rightarrow Y = 5in this case ...

branch (b1) \rightarrow Y = 9*in this case ...*

The solution (visualization)

- Branching rules (X=...)
- A lot of (easier) subproblems
- Stopping rules (no sol.)

Tools for synthesis

Who is the all time world's best boxeur ?

Indicators:

- strength
- speed
- n. of victories
- years of premiership

• .

We need a common framework to compare the alternatives !

Contact

Alberto Colorni – Politecnico di Milano

- <u>alberto.colorni@polimi.it</u>
- <u>http://www.geoc.test.design.polimi.it/pers1.php?l</u> ang=it&cod_menu=per&cod_menu_II=alf&matr= 10000628

Consorzio Poliedra

• <u>www.poliedra.polimi.it</u> Thank you for tour attention

© Alberto Colorni

42